加入收藏 | 设为首页 | 会员中心 | 我要投稿 |
站内搜索:
日本油研
您当前的位置:首页 > 液压文章资讯 > 液压机械文章资讯

基于智能运动控制器的开放式多轴联动数控系统

时间:2019-12-10 14:47:12  来源:  作者:  浏览量: 0
简介: 1 数控系统的硬件结构本文提出了以智能运动控制器为位控模块,工业控制机为支撑单元的开放式数控系统,其软件平台实现了人机界面的图形化,用二次插补法实现对多轴联动

1 数控系统的硬件结构本文提出了以智能运动控制器为位控模块,工业控制机为支撑单元的开放式数控系统,其软件平台实现了人机界面的图形化,用二次插补法实现对多轴联动的控制。


 javascript:resizepic(this) border=0>


图1 数控系统结构原理图


1 数控系统的硬件结构

智能运动控制器


    智能运动控制器是一个较高性能的伺服运动控制器。每一两块块控制器上有三块或四块控制芯片,每一块芯片独立地控制一个轴的运动,可对芯片进行初始化编程,规定各控制芯片的工作状态:发脉冲的速率,发脉冲的个数。本文采用两块智能运动控制器控制五轴联动。


数控系统硬件结构及工作原理

    该数控系统的控制是在工业控制机(IPC)平台的基础上,采用两块智能运动控制器进行位控。工控机上的CPU 和运动器上的控制芯片构成了主从式处理机构。主机完成粗插补运算,得到每一次各轴需运动的步数及方向,用这些数据去控制智能运动控制器的工作状态:各轴的运动步数、发脉冲速率:再由智能运动控制器完成五轴的精插补。工作台的运行情况通过传感器直接反馈输入智能运动控制器,此信号可由主CPU读入。其结构原理如图1所示。


闭环控制系统

    在这种系统中,主机读入长光栅传感器反馈回的工作台的实际位移量,将此位移量与理想值相比较,得到误差信号并用此误差去控制智能运动控制器,使实际值与理想值趋于重合,从而消除运行误差。该系统如图2所示。


javascript:resizepic(this) border=0>


图2 闭环控制系统


2 数控系统的软件设计

数字控制的插补算法

    保证数控工作台沿着预定的轨迹运行的问题,实质上是如何通过插补运算,实现按一定规律分配进给脉冲,控制伺服电机运动。插补运算是根据数控语言代码提供的轨迹类型选择相应算法,保证在一定精度范围内计算出一段直线或圆弧的一系列中间点的坐标值,并逐次以增量坐标值或脉冲序列形式输出,使伺服电机以一定速度转动,控制工作台按预定的轨迹运动。数控技术中采用的插补算法可归纳为两类:


    一次插补法 如逐点比较法、数字积分器法等,这类算法,进给速度受到限制,过去的硬件数控系统常常采用。


    二次插补法 它将插补功能分为粗插补和精插补两部份完成,常用的有扩展数字积分器法和时间分割法。这类算法,在每个插补运算周期里输出的不是单个脉冲,而是一个线段(位置增量坐标数据),因而能显著提高进给速度,在计算机数控系统中得到广泛采用。本系统的插补算法就是采用时间分割法,它根据进给速度计算出每个固定时间内的进给量,进行粗插补运算,求出这个插补周期各联动坐标应移动的位置增量值,然后再通过精插补将该插补周期的各轴位置增量值变换成各坐标方向的均匀运动。


基于扩充内存的时间分割插补法


    数控系统的加工过程一般要经过插补、输出脉冲、反馈等几个过程。传统的方法是插补一次,发出一个脉冲,检测一次误差。在这种方法下,控制过程是一个顺序过程,其中各个环节环环相扣,互相制约,因此很难实现误差的快速响应。同时,由于DOS系统的寻址能力有限,因此必须考虑存放大量插补数据的方法。为了解决这些问题,本系统采用基于扩充内存的时间分割插补方法:为了提高系统的实时性,控制方法上采用读入运行代码文件后,先在主机完成粗插补运算,并把插补得到的数据放入扩充内存,然后采用中断的方式从扩充内存取数,并与反馈系统检测的误差数据合并处理,再用得到的结果(各轴的位置坐标增量数据)去控制智能运动控制器的工作状态,然后由智能运动控制器完成精插补,它发出序列脉冲去直接控制各个伺服驱动器。放入扩充内存的数据类型定义如下:

struct emms

{char complete:

 char dirr[5]:

 char stepp[5]:

}:


    其中complete 是定义粗插补数据是否完成的标志,dirr[5]定义五轴的运动方向:0x00为不动,0x01为正转,0x10为反转:stepp[5]定义五轴的运动步数。中断程序从扩充内存读入这些数据后,再与反馈系统检测的误差数据合并处理,并用得到的结果去控制智能运动控制器控制芯片的工作状态,就可完成精插补,实现在相同时间内各轴沿相应方向运动一定的步数。图3 是系统闭环控制程序框图。






javascript:resizepic(this) border=0>




图3 闭环控制程序框图

 


    这里采用的闭环控制方法是在精插补前根据误差补偿数据自动与粗插补数据合并而实现的。例如取得粗插补数据后(各轴应运动的步数及方向),在发给智能运动控制器之前,会根据系统反馈的误差数据重新配置,假设粗插补数据0轴是:dirr[0]=0x01,stepp[0]=0x01,而系统反馈情况是上一次反转运行有一步未运行,则精插补数据变为dirr[0]=0x00,stepp[0]=0x00,此次0轴电机不运行:如反馈情况是上一次正转有一步未运行,则精插补数据变为dirr[0]=0x01,step-p[0]=0x02,此次0轴电机正转运行- 步。经过这样的处理后,位控系统及时地将运行误差在紧邻的一个粗插补数据进行补偿,避免了影响后面的插补运行,提高了反馈补偿的响应速度和精度。而传统的间接控制方法是将误差补偿数据编入插补算法中,这样补偿被人为地滞后,而且如果补偿不到位,将影响后面的插补数据精度,其精度和响应速度都降低了。


3 实验

    实验是在我们教研室自制的五轴联动数控机构上进行的。实验所用的闭环检测元件是普通金属长光栅尺,其检测分辨率为0.004mm。数控系统采用PⅡ233 研华工控机为控制主机,运动控制器采用两块国产智能运动控制器,驱动电机为国产步进电机。实验中,我们测试了两轴、三轴、四轴、五轴的联动运行,运动速度为1500mm/min。实验结果,数据误差为0.02mm。实验结果比较令人满意。


4 结论

    实验结果证明,本系统的硬件、软件设计比较令人满意,其开放性令人满意,能够满足不同用户的需要,实现对多轴联动的开环或闭环实时控制。

---------汇荣流体
来顶一下
返回首页
返回首页
 
上一篇:数控系统的发展 
下一篇:数控装置体系结构技术 
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
全站热门文章
液压系统怎么进行酸洗 液压系统酸洗流程工艺及配方说

     针对液压系统的管道酸洗可以有效地将管内壁氧化物彻底清除,还能预防管壁过腐蚀、管道内壁再次锈蚀及管内残留化学反应沉积物等现象的发生,下面为大家介绍

顺序阀出现乱序、噪音如何解决

  顺序阀出现乱序如何解决:1、首先检查顺序阀是否装反。2、顺序阀设定压力不合理。在乱序位置适当提高顺序阀设定压力。比如调整到120bar。3、如果用的是流量再生阀,

液压式大包连浇小车的维修_同步系统的改造

   液压式大包连浇小车的维修_同步系统的改造 大包连浇装置是连铸机进行钢包更换,实现多炉浇注的必备装置。它运行的效果直接影响着连铸机的生产。常用的大包连浇

分离式液压站_液压泵站

   分离式液压千斤顶液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静

液压泵结构和液压泵工作原理描述

  齿轮泵描述齿轮泵结构图 CB-B型齿轮泵是我国最基本最为典型的外啮合齿轮泵,该泵结构如图所示。它由前盖3、泵体2、后盖1、一对齿数相同的齿轮7和9组成。齿轮

你可知道为什么液压缸的压力等级是6.3, 16, 25, 31.5M

   引言你可知道粗糙度为什么是0.8, 1.6, 3.2, 6.3, 12.5?你可知道油缸缸径为什么是63, 80, 100, 125?你可知道油缸压力为什么是6.3,

东风4型内燃机车静液压马达油封漏油原因及措施

   东风4型内燃机车静液压马达油封漏油原因及措施1.简介 东风4B、4C型机车长时间处于全负荷、高速运用状态,静液压马达油封漏故障率明显提高,静液压马达油封频繁漏

液压马达发热的原因及解决方式

   液压马达和液压泵是液压系统中最主要的两个发热源。液压马达是执行机构,主要执行旋转运动,是把压力能转化为机械能的过程。液压泵是机械能转化为压力能的过程,也

不同的双缸同步回路

   机械同步就不说了,从简单到复杂:
1. 分流阀:准确率差,流量要选小不选大(和选女友年纪的原则相同),因为准确率是以最大流量算的。
2.

工程机械液压油箱设计应注意的关键问题

     由于工程机械具有移动性的特点,所以其液压油箱的设计与普通液压油箱设计有所不同,下面就介绍下在移动式工程机械液压油箱设计中

轴向柱塞泵的工作原理与结构

   轴向柱塞泵的工作原理与结构 1.轴向柱塞泵 为了构成柱塞的往复运动条件,轴向柱塞泵都具有倾斜结构,所以轴向柱塞泵根据其倾斜结构的不同分为斜盘式(直轴式

摆线液压马达端面划伤的修复

   摆线液压马达端面划伤的修复1.简介 由于摆线液压马达是一种低速大扭矩多功能液压马达,根据工作需要在工程机械上选用十分广泛。某摆线马达,配流结构为平面配流,排

常见液压马达承受径向力和轴向力的情况

   外五星液压马达可承受较高的径向力和轴向载荷,这取决于外五星液压马达所选用的是圆锥滚子轴承。客户在选型中需要承载轴向力时可选用外五星液压马达。

电液伺服阀的内泄漏特性及故障在线分析

   电液伺服阀的内泄漏特性及故障在线分析 在汽轮机电液控制系统( DEH)中,作为电液转换元件电液伺服阀的作用十分重要。电液伺服阀稳定可靠性直接影响到机组的安全稳

加热炉_步进炉水平液压缸比例控制失效故障

   加热炉_步进炉水平液压缸比例控制失效故障 (1)步进炉水平液压缸的比例控制 步进炉水平缸所驱动的负载较大,具有很大的惯性。为了防止冲击,在步进炉水平缸刚启

多路阀的密封出现泄漏怎么办?

   多路阀的密封等设备由于长时间大扭矩机械运动,齿轮箱啮合间隙变大,造成较大的噪音及设备振动。加之密封部位长期处于高速、高温状态下运

液压油缸如何保养

   因为液压油缸要承受很大的压强,负载越重,它的压强就会越大,因此,做好液压油缸的保养工作是整个液压系统的维护最重要的一环。液压油缸

力士乐液压启-停技术有效提高工程机械燃油经济性

     多年来,液压技术已被证明非常适合移动设备用来解决其面临的不断发展的挑战。更高的性能要求催生了压力更高的液压泵和马达。对

比例多路换向阀

   比例多路换向阀 多路换向阀是指以两个以上的换向阀为主体,集安全阀、单向阀、过载闷、补油 阀、分流阀、制动阀等于一体的多功能组合阀,它具有结构紧凑、管路简单

汽轮机液压故障_油动机故障现象及分析

   汽轮机液压故障_油动机故障现象及分析 DEH控制系统(数字电液控制系统)由EH油系统、DEH数字控制器以及汽轮发电机组构成。系统采用数字计算机作为控制器,电液转换

液压机工作效率提升技巧的方法有哪些

   液压机其在机械加工中很常见且会经常使用,而且又是网站产品和关键词,所以,有必要进行该产品的熟悉和了解,好让大家知道它是什么以及怎样来正确合理使用,得到预

履带底盘与挖掘机有着重大的联系

  说到履带底盘,大家应该对其不陌生,众所周知,履带底盘在挖掘机中的应用!下面的文章就带大家了解一下挖掘机吧!从20世纪后期开始,国际上挖掘机的生产向大型化、微型化、多

超级摆缸径向柱塞液压马达的优点

   超级内五星与普通内五星之间的优点1.原先的内五星马达受高压或冲击后经常出现的故障是轴承套碎裂。HZH超级马达通过材料与结构的改变彻底解决这一问题。即使

与发动机转速连动控制的负载敏感系统

     随着发动机的转速改变油泵流量随之变化,要求油泵控制目标补偿压差和多路阀进出口压差也随之改变,要求目标补偿压差随发动机转速

挖掘机回转马达故障的分析及排除方法

   回转马达一、液压马达回转无力液压马达是执行机构,设在液压传动的末端,是把液压能转换为机械能,使平台回转。此马达采用轴向柱塞点接触中转速的液压马达。1、现

电磁换向阀

   电磁换向阀 电磁换向阀又称电动换向阀,简称电磁阀,它是借助电磁铁的吸 力推动阀芯移动的。 图G所示为三位四通电磁换向阀的结构原理和职能符号。阀的两端各有

多路阀实验时的注意要点

   多路阀主要是一种在工程机械,矿山,冶金等不同的行业和领域中使用范围非常广泛的一种设备,主要是带有压力补偿的负载敏感比例换向多路阀

过滤器的故障分析与排除

   过滤器的故障分析与排除过滤器带来的故障包括过滤效果不好给液压系统带来的故障,例如因不能很好过滤,污物进入系统带来的故障等。1.滤芯破坏变形这一故障现象表现为

变频调速功率适应型液压系统的研究

   1 引言 节能一直是液压技术的主要研究方向之一。节能型液压回路包括压力适应型回路、流量适应型回路和功率适应型回路,其中功

液压缸的维护、维修知识总结

   1.液压缸的日常检查内容①液压缸的泄漏情况。②液压缸的动作状态是否正常。③液压缸运行时的声音和温度有无异常。④活塞杆有无伤

文章分类
  【 液压机 】文章资讯
  【 液压系统 】文章资讯
  【 液压泵 】文章资讯
  【 液压阀 】文章资讯
  【 液压缸 】文章资讯
  【 液压马达 】文章资讯
  【 液压附件 】文章资讯
  【 工程机械 】文章资讯
热门文章排行
  • 全部
  • 本月
  • 本周
  • 今天
推荐资讯
压力不正常或所需压力不能使液压系统正常工作,那么液压机的压力问题是什么?
压力不正常或所需压力
液压机在制造工件的过程中,每个工件都具有变形阻力
液压机在制造工件的过
你知道不,隔振方法可用于减少油压机的振动
你知道不,隔振方法可用
液压机是否要有安全防护装置及保压?
液压机是否要有安全防
推荐产品
468-800-50BM/日本Azbil TACO气动元件
468-800-50BM/日本Azb
日本油研方向控制阀
日本油研方向控制阀
DSLHG-10-1-ET-A200-C-13日本油研座阀型电液换向阀
DSLHG-10-1-ET-A200-C
LSVHG-04EH-750-2P-ET-WEA-B1-20日本油研伺服阀
LSVHG-04EH-750-2P-ET
EHFBG-06-250-C-E-S-5001日本油研电液比例阀
EHFBG-06-250-C-E-S-5
PM37-06BC-3.7-A240-30日本油研PM系列电机泵
PM37-06BC-3.7-A240-3
VPVQQ-PSAW-06C-PSSO-06BA-60日本油研变量叶片泵
VPVQQ-PSAW-06C-PSSO-
ASR2-C-CXD200N-A00-12日本油研伺服电机驱动泵
ASR2-C-CXD200N-A00-1
日本油研高压柱塞泵A3H145-FR14K-10
日本油研高压柱塞泵A3
日本油研高压柱塞泵A3H56-FR01KK-10
日本油研高压柱塞泵A3
栏目最新文章